Math, asked by rajeshbhuria15, 7 months ago

If f:R->R,f(x)=x-2,g:R->R,g(x)=x+2 then (f+g)(x) =_______
(A)x (B) x2-4 (C) 2x (D)4​

Answers

Answered by shadowsabers03
4

The function \displaystyle\sf {f:\mathbb{R}\to\mathbb {R}} is defined as,

\displaystyle\longrightarrow\sf{f(x)=x-2}

The function \displaystyle\sf {g:\mathbb{R}\to\mathbb {R}} is defined as,

\displaystyle\longrightarrow\sf{g(x)=x+2}

Then,

\displaystyle\longrightarrow\sf{(f+g)(x)=f(x)+g(x)}

\displaystyle\longrightarrow\sf{(f+g)(x)=x-2+x+2}

\displaystyle\longrightarrow\underline {\underline {\sf{(f+g)(x)=2x}}}

Hence (C) is the answer.

Additional Information:-

For two real functions \displaystyle\sf {f(x)} and \displaystyle\sf {g(x),}

  • \displaystyle\sf {(f+g)(x)=f(x)+g(x)}

  • \displaystyle\sf {(f-g)(x)=f(x)-g(x)}

  • \displaystyle\sf {(fg)(x)=f(x)\cdot g(x)}

  • \displaystyle\sf {\left(\dfrac {f}{g}\right) (x)=\dfrac {f(x)}{g(x)},\ g(x)\neq 0}
Similar questions