Math, asked by King2511, 10 months ago

if f(r)=pi×r^2 then find lim h-0[f(r+h)-f(r)/h]​

Answers

Answered by Swarup1998
5

Topic - Limits

Given. f(r)=\pi r^{2}

To find. \displaystyle \lim_{h\to 0}\frac{f(r+h)-f(r)}{h}

Solution.

Here, f(r)=\pi r^{2}

Then, f(r+h)=\pi (r+h)^{2}

Now, \displaystyle \lim_{h\to 0}\frac{f(r+h)-f(r)}{h}

\displaystyle =\lim_{h\to 0}\frac{\pi (r+h)^{2}-\pi r^{2}}{h}

\displaystyle =\lim_{h\to 0}\frac{\pi \{(r+h)^{2}-r^{2}\}}{h}

\displaystyle =\lim_{h\to 0}\frac{\pi (r+h+r)(r+h-r)}{h}

\displaystyle =\lim_{h\to 0}\frac{\pi (2r+h) h}{h}

\displaystyle =\lim_{h\to 0}\pi (2r+h) since h\neq 0

=\pi(2r+0)

=2\pi r

Answer. \displaystyle \lim_{h\to 0}\frac{f(r+h)-f(r)}{h}=2\pi r

Note. The given limit presents the derivative of f(r) with respect to r. So this can be written as \frac{d}{dr}(\pi r^{2})=2\pi r.

Similar questions