Math, asked by chandrapatilaxmi6584, 9 months ago

If f : R  R defined by f (x) = x3

– 1, then f–1 {– 2, 0, 7| = ___​

Answers

Answered by MaheswariS
5

\textbf{Given:}

f:\,R\implies\,R\;\text{by}\;f(x)=x^3-1

\textbf{To find:}\;f^{-1}\{-2,0,7\}

\textbf{Solution:}

\bf\,f^{-1}\{-2,0,7\}

=\text{Set of all pre images of -2, 0 and 7}

\text{Now,}

f(x)=-2

\implies\,x^3-1=-2

\implies\,x^3=-2+1

\implies\,x^3=-1

\implies\bf\,x=-1

\therefore\textbf{Pre image of -2 is -1}

f(x)=0

\implies\,x^3-1=0

\implies\,x^3=1

\implies\bf\,x=1

\therefore\textbf{pre image of 0 is 1}

f(x)=7

\implies\,x^3-1=7

\implies\,x^3=1+7

\implies\,x^3=8

\implies\bf\,x=2

\therefore\textbf{pre image of 7 is 2}

\text{Hence,}\;\bf\,f^{-1}\{-2,0,7\}=\{-1,1,2\}

.

Similar questions