If f : R → R, g : R → R and h : R → R is such that f(x) = x2, g(x) = tanx and h(x) = logx, then the value of [ho(gof)](x), if x = π√2 will be
Answers
EXPLANATION.
⇒ If f : R ⇒ R, g : R ⇒ R, h : R ⇒ R.
⇒ f(x) = x².
⇒ g(x) = tan(x).
⇒ h(x) = ㏒(x).
⇒ x = π/√2.
As we know that,
To find :
⇒ [ho(gof)].
⇒ [ho (g f(x))]
⇒ g f(x) = tan(x²).
⇒ [h (g f(x))] = ㏒(g f(x)).
⇒ [ho(gof)]. = ㏒(tanx²).
⇒ [ho(gof)].(π/√2) = ㏒[tan(π/√2)²].
⇒ [ho(gof)]. = ㏒[tan(π²/2)].
MORE INFORMATION.
Interval.
(1) = Close interval [a, b] = {x, a ≤ x ≤ b}.
(2) = Open interval (a, b) or ]a, b[ = {x, a < x < b}.
(3) = Semi open or semi close interval.
[a, b[ or [a, b) = {x ; a ≤ x < b}.
]a, b] or (a, b] = {x ; a < x ≤ b}.
⇒ If f : R ⇒ R, g : R ⇒ R, h : R ⇒ R.
⇒ f(x) = x².
⇒ g(x) = tan(x).
⇒ h(x) = ㏒(x).
⇒ x = π/√2.
As we know that,
To find :
⇒ [ho(gof)].
⇒ [ho (g f(x))]
⇒ g f(x) = tan(x²).
⇒ [h (g f(x))] = ㏒(g f(x)).
⇒ [ho(gof)]. = ㏒(tanx²).
⇒ [ho(gof)].(π/√2) = ㏒[tan(π/√2)²].
⇒ [ho(gof)]. = ㏒[tan(π²/2)].
_______________________________________________________________