Math, asked by udamvenugopalyadav, 4 months ago

If f:R-R is defined as f(x + y) = f(x) + f(y) ¥x, y € R and f (1) = 7,
then find Ef(r).
r=1​

Answers

Answered by Anonymous
43

To find :

 \displaystyle \sf \sum \limits_{ r=1}^{7} f(r) = ?

Given that,

 \sf \: f(x + y) = f(x) + f(y) \: and \: f(1) = 7

Now,

 \displaystyle \sf \sum \limits_{ r=1}^{7} f(r) = f(1) + f(2) +  \cdots \:  + f(7)

Putting x = y = 1,

 \sf \: f(2)  = f(1 + 1) \\  \\  \longrightarrow \sf \: f(2) = f(1) + f(1) \\  \\  \longrightarrow \sf \: f(2) = 14

Putting x = 2 and y = 1,

 \sf \: f(3)  = f(2 + 1) \\  \\  \longrightarrow \sf \: f(3) = f(2) + f(1) \\  \\  \longrightarrow \sf \: f(3) =21

Putting x = y = 2,

 \sf \: f(4)  = f(2 + 2) \\  \\  \longrightarrow \sf \: f(4) = f(2) + f(2) \\  \\  \longrightarrow \sf \: f(4) =28

Putting x = 4 and y = 1,

 \sf \: f(5)  = f(4 + 1) \\  \\  \longrightarrow \sf \: f(5) = f(4) + f(1) \\  \\  \longrightarrow \sf \: f(5)  = 35

Putting x = 5 and y = 1,

 \sf \: f(6)  = f(5 + 1) \\  \\  \longrightarrow \sf \: f(6) = f(5) + f(1) \\  \\  \longrightarrow \sf \: f(6)  = 42

Putting x = 4 and y = 3,

 \sf \: f(7)  = f(4 + 3) \\  \\  \longrightarrow \sf \: f(7) = f(4) + f(3) \\  \\  \longrightarrow \sf \: f(7)  = 49

Now,

  \implies \displaystyle \sf \sum \limits_{ r=1}^{7} f(r) = 7 + 14 + 21 + 28 + 35 + 42 + 49 \\   \\   \implies \displaystyle \boxed{ \boxed{ \sf \sum \limits_{ r=1}^{7} f(r) = 196}}

Answered by Anonymous
2

Correct question= If f : R → R satisfies f (x + y) = f (x) + f (y), for all x,

Answer:-⬇️

If f : R → R satisfies f (x + y) = f (x) + f (y), for all x,

Similar questions