If f : R → R satisfies f(x+y) = f(x) + f(y), for all x, y∈R and f(1) =7, then , f(r) is
(a)
(b)
(c)
(d) 7n + (n +1) .
Answers
Answered by
24
Q).
If f is a function satisfying f(x+y)=f(x).f(y)∀x,y∈N such that f(1)=3and∑x=1nf(x)=120, then find the value of n.
3456
Sum of n terms of G.P. =Sn=arn−1r−1
Given: f(x+y)=f(x).f(y),
∑nx=1f(x)=120 and f(1)=3.
when x=y=1, f(1+1)=f(2)=f(1).f(1)=3×3=9
when x=2andy=1,f(2+1)=f(3)=f(2).f(1)=9×3=27
Now
Given: ∑nx=1f(x)==f(1)+f(2)+f(3)+........f(n)=120
⇒3+9+27+........f(n)=120
This series is a G.P. with a=3,r=3andSn=120
We know that Sum of n terms of G.P. =Sn=arn−1r−1
⇒3.3n−13−1=120
⇒3n−1=40×2=80
⇒3n=81=34 ⇒n=4.
i have solved everything... i hope it help you
Similar questions