If f( {\rm{x}})=\rm{6x}f(x)=6x and b = \rm{\dfrac{a+c}{2}}2a+c then ,
a] f( {\rm{a - 3)}} + f {\rm{(c - 3)}}= 2f {\rm{(b - 3)}}f(a−3)+f(c−3)=2f(b−3)
b] \dfrac{ f{\rm{(a - 3)}} - f \rm{{(b - 3)}}}{f {\rm{(b - 3)}} - f {\rm{(c - 3)}}} = 1f(b−3)−f(c−3)f(a−3)−f(b−3)=1
c] \dfrac{ f{\rm{(a - 3)}} - f \rm{{(c - 3)}}}{f {\rm{(b - 3)}} - f {\rm{(a - 3)}}} = 2f(b−3)−f(a−3)f(a−3)−f(c−3)=2
d] f({\rm{a - 3)}} - f {\rm{(c - 3)}} = \rm 6(a - c)f(a−3)−f(c−3)=6(a−c)
NOTE : This question has more than one Correct answer.
Answers
Answered by
0
hope it's help you
follow me
Attachments:
Answered by
11
Answer:
Verified Answer in attachment
Attachments:
Similar questions