Math, asked by jisha9113, 5 months ago

If F(s) is the Fourier transform of f(x), then F
[f(x)cos ax] =______​

Answers

Answered by nerpagarkrupal
3

Step-by-step explanation:

If F(s) is the Fourier transform of f(x), then F

[f(x)cos ax] =______

Answered by talasilavijaya
0

Answer:

If F(s) is the Fourier transform of f(x), then  F[f(x)cos ax]=\dfrac{1}{2} \Big\{F(s+a)+ F(s-a)\Big\}

Step-by-step explanation:

Given F(s) is the Fourier transform of f(x).

The Fourier transform of f(x) is

F(s)=\dfrac{1}{\sqrt{2\pi } } \Big${\displaystyle\int\limits^{\infty} _{-\infty} {e^{isx} f(x)} \, dx

For F[f(x)cos ax],

F[f(x)cos ax]=\dfrac{1}{\sqrt{2\pi } } \Big${\displaystyle\int\limits^{\infty} _{-\infty} {e^{isx} f(x)cos ax} \, dx

According to Euler's rule, cox=\dfrac{e^{ix} +e^{-ix}}{2}

Applying the same for cosax,  

F[f(x)cos ax]=\dfrac{1}{\sqrt{2\pi } } \Big${\displaystyle\int\limits^{\infty} _{-\infty} {e^{isx} f(x)\dfrac{e^{iax} +e^{-iax}}{2}} \, dx

=\dfrac{1}{2} \Bigg\{\dfrac{1}{\sqrt{2\pi } } \Big${\displaystyle\int\limits^{\infty} _{-\infty} {e^{isx} \big (e^{iax} +e^{-iax}}\big) f(x)\ dx\Bigg\}

=\dfrac{1}{2} \Bigg\{\dfrac{1}{\sqrt{2\pi } }\Bigg\{\Big${\displaystyle\int\limits^{\infty} _{-\infty} {e^{isx} . e^{iax}  f(x)\ dx+ \Big${\displaystyle\int\limits^{\infty} _{-\infty} {e^{isx} .e^{-iax}} f(x)\ dx\Bigg\}\Bigg\}

=\dfrac{1}{2} \Bigg\{\dfrac{1}{\sqrt{2\pi } }\Big${\displaystyle\int\limits^{\infty} _{-\infty} {e^{i(s+a)x} f(x)\ dx+ {\dfrac{1}{\sqrt{2\pi } }\Big${\displaystyle\int\limits^{\infty} _{-\infty} {e^{i(s-a)x} }} f(x)\ dx\Bigg\}

Using the Fourier transform again,

=\dfrac{1}{2} \Big\{F(s+a)+ F(s-a)\Big\}

Therefore, if F(s) is the Fourier transform of f(x), then F[f(x)cos ax]=\dfrac{1}{2} \Big\{F(s+a)+ F(s-a)\Big\}

Similar questions