Math, asked by kalukhesarika, 3 months ago

if F(s) is the fourier transform of f (x)
then the fourier transform of f(ax) is ...​

Answers

Answered by pulakmath007
6

SOLUTION

GIVEN

F(s) is the fourier transform of f (x)

TO DETERMINE

The fourier transform of f(ax)

EVALUATION

Here it is given that

F(s) is the fourier transform of f (x)

\displaystyle  \sf{F(s) = \int\limits_{- \infty}^{\infty} f(x)e^{isx} \, dx }

Hence the required fourier transform of f(ax)

\displaystyle  \sf{ = \int\limits_{- \infty}^{\infty} f(ax)e^{isx} \, dx }

\displaystyle  \sf{ = \int\limits_{- \infty}^{\infty} f(t)e^{ \frac{ist}{a} } \,  \frac{dt}{a} }

\displaystyle  \sf{ =  \frac{1}{a} \int\limits_{- \infty}^{\infty} f(t)e^{ \frac{ist}{a} } \,  dt}

\displaystyle  \sf{ =  \frac{1}{a} \int\limits_{- \infty}^{\infty} f(x)e^{ix .\frac{s}{a} } \,  dx}

\displaystyle  \sf{ =  \frac{1}{a} F \bigg(  \frac{s}{a} \bigg)}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1.Laplace transform (D²-3D+2)y=4 given y(0)=2 and y’(0)=3

https://brainly.in/question/32934012

2. If x=u^2-v^2,y=2uv find the jacobian of x, y with respect to u and v

https://brainly.in/question/34361788

Similar questions