If f(sinx)=(tanx)^2 then find f'(x)
Ans:- 2x/(1-x^2)^2
plz sopve this..
Answers
ANSWER :–
f'(x) = 2x/(1 - x²)²
EXPLANATION :–
GIVEN :–
A function f(sinx)=(tanx)² .
TO FIND:–
Value of f'(x)
SOLUTION :–
• Given function –
=> f(sinx) = (tanx)²
• Now let's put sin(x) = x –
• And we know that –
=> cos(x) = √[1 - sin²(x)]
=> cos(x) = √(1 - x²)
• Now tan(x) = sin(x)/cos(x) –
=> tan(x) = x/√(1 - x²)
• Now put the values in function –
=> f(x) = [x/√(1 - x²)]²
=> f(x) = x²/(1 - x²)
Differentiate with respect to 'x' –
=> f'(x) = [(1 - x²)(2x) - x²(-2x)] / [(1 - x²)²]
=> f'(x) = [(1 - x²)(2x) + x²(2x)] / [(1 - x²)²]
=> f'(x) = [(1 - x² + x²)(2x)] / [(1 - x²)²]
=> f'(x) = 2x/(1 - x²)²
USED FORMULA :–
(1) If f(x) = U/V , then f'(x) = [VU' - UV']/V²