Math, asked by janhavipatil1977, 3 months ago

if f(t)= cosh at then laplace transform of

Answers

Answered by rajuraju1981raju
0

Answer:

hi jhhihgnkihjjugjoih if no I fix

Answered by brokendreams
1

Laplace Transform of f(t) = cosh \ at is L[cosh \ at] = \frac{s}{s^{2} - a^{2}}

Step-by-step explanation:

Given: The function f(t) = cosh \ at

To Find: Laplace Transform of f(t) = cosh \ at

Solution:

  • Laplace Transform of the function f(t)

The Laplace Transform L[f(t)] of the function f(t) is given by,

L[f(t)] = \int\limits^{\infty}_0 {f(t)e^{-st}} \, dt

  • Laplace Transform of f(t) = cosh \ at

The Laplace Transform L[cosh \ at] of the function cosh \ at is,

L[cosh \ at] = L \Big[ \frac{e^{at} + e^{-at}}{2} \Big]

\Rightarrow L[cosh \ at] = \frac{1}{2}  \Big( L[e^{at}] + L[e^{-at}] \Big) \ \cdots \cdots (1)

Now, considering L[e^{at}] such that

\Rightarrow L[e^{at}] = \int\limits^{\infty}_0 {e^{at}e^{-st}} \, dt

\Rightarrow L[e^{at}] = \int\limits^{\infty}_0 {e^{-(s-a)t}} \, dt

\Rightarrow L[e^{at}] = \Big[ \frac{e^{-(s-a)t}}{-(s-a)}  \Big]^{\infty}_0 = \frac{1}{(s-a)} \ \cdots \cdots (2)

Similarly, considering L[e^{-at}] such that

\Rightarrow L[e^{-at}] = \Big[ \frac{e^{(s+a)t}}{(s+a)}  \Big]^{\infty}_0 = \frac{1}{(s+a)} \ \cdots \cdots (3)

Using (2) and (3) in (1), we get;

\Rightarrow L[cosh \ at] = \frac{1}{2}  \Big( \frac{1}{s-a} + \frac{1}{s+a} \Big) = \frac{1}{2}  \Big( \frac{s+a+s-a}{s^2-a^2} \Big)

\Rightarrow L[cosh \ at] = \Big( \frac{s}{s^2-a^2} \Big)

Hence, Laplace Transform of f(t) = cosh \ at is L[cosh \ at] = \frac{s}{s^{2} - a^{2}}

Similar questions