if f(x)= (1-sin2x+cos2x)/2cos2x find value of f(11)f (34)
kritartha:
what is 11 here it is degree or simple 11 tell me first
Answers
Answered by
29
please go through this solution
if you understand then thanks me and mark as a brainliest.
if you understand then thanks me and mark as a brainliest.
Attachments:
Answered by
22
f (x)=(1-sin2x+cos2x)/2cos2x
=(2cos^2x-2sinx.cosx)/2cos2x
=(cos^2x-sinx.cosx)/(cos^2x-sin^2x)
=cosx/(cosx+sinx)
now
f (11)=cos11/(cos11+sin11)
f (34)=cos34/(cos34+sin34)
f (11) f (34)=cos11.cos34/(cos11+sin11)(cos34+sin34)
=cos11.cos34/(cos11+cos79)(cos34+cos56)
=cos11.cos34/(2cos45.cos34)(2cos45.cos11)
=1/(4cos^2(45))=1/4x2=1/2
=(2cos^2x-2sinx.cosx)/2cos2x
=(cos^2x-sinx.cosx)/(cos^2x-sin^2x)
=cosx/(cosx+sinx)
now
f (11)=cos11/(cos11+sin11)
f (34)=cos34/(cos34+sin34)
f (11) f (34)=cos11.cos34/(cos11+sin11)(cos34+sin34)
=cos11.cos34/(cos11+cos79)(cos34+cos56)
=cos11.cos34/(2cos45.cos34)(2cos45.cos11)
=1/(4cos^2(45))=1/4x2=1/2
Similar questions