Math, asked by Sajju11, 1 year ago

If f (x)=1-x/1+x then find f [f (Sin theta)]

Attachments:

Answers

Answered by MaheswariS
3

Answer:

f[f(sin\theta)]=sin\theta

Step-by-step explanation:

Given:

f(x)=\frac{1-x}{1+x}

Now,

f(sin\theta)

=\frac{1-sin\theta}{1+sin\theta}

f[f(sin\theta)]

=f[\frac{1-sin\theta}{1+sin\theta}]

=\frac{1-(\frac{1-sin\theta}{1+sin\theta})}{1+(\frac{1-sin\theta}{1+sin\theta})}

=\frac{\frac{1+sin\theta-(1-sin\theta)}{1+sin\theta}}{\frac{1+sin\theta+1-sin\theta}{1+sin\theta}}

=\frac{1+sin\theta-1+sin\theta}{1+sin\theta+1-sin\theta}

=\frac{sin\theta+sin\theta}{1+1}

=\frac{2sin\theta}{2}

=sin\theta

we get

f[f(sin\theta)]=sin\theta

Answered by amitverma3729
0

this is my answer thanks

Attachments:
Similar questions