Math, asked by mhatrepranit7703, 6 months ago

If f (x) = 16*+log2 x Find f (1/2)​

Answers

Answered by pulakmath007
1

\displaystyle \sf{If  \:  \: f(x) =  {16}^{x}  +  log_{2} x \:  \: then  \:  \: f \bigg( \frac{1}{2} \bigg) }= 3

Correct question :

\displaystyle \sf{If  \:  \: f(x) =  {16}^{x}  +  log_{2} x \:  \: find  \:  \: f \bigg( \frac{1}{2} \bigg) }

Given :

\displaystyle \sf{f(x) =  {16}^{x}  +  log_{2} x  }

To find :

\displaystyle \sf{f \bigg( \frac{1}{2} \bigg) }

Formula :

 \displaystyle \sf{1. \:  \:  log \bigg( \frac{a}{b}  \bigg)  =  log(a) -  log(b)  }

 \sf{2. \:  \:   log_{a}(a)   = 1}

Solution :

Step 1 of 2 :

Write down the given function

Here the given function is

\displaystyle \sf{ f(x) =  {16}^{x}  +  log_{2} x  }

Step 2 of 2 :

Find the required value

\displaystyle \sf{ f(x) =  {16}^{x}  +  log_{2} x  }

Putting x = 1/2 we get

\displaystyle \sf{f \bigg( \frac{1}{2} \bigg)  =  {16}^{ \frac{1}{2} } +  log_{2} \bigg( \frac{1}{2} \bigg )  }

\displaystyle \sf\implies f \bigg( \frac{1}{2} \bigg)  =  {( {4}^{2} )}^{ \frac{1}{2} } +\bigg[ log_{2}(1)  -  log_{2}(2) \bigg]  \:  \:  \: \bigg[ \:  \because \:log \bigg( \frac{a}{b}  \bigg)  =  log(a) -  log(b)  \bigg]

\displaystyle \sf\implies f \bigg( \frac{1}{2} \bigg)  =  {( {4}^{} )}^{ (2 \times \frac{1}{2}) } +\bigg(0  -  1 \bigg)\:  \:  \: \bigg[ \:  \because \: log_{a}(a)  = 1 \bigg]

\displaystyle \sf\implies f \bigg( \frac{1}{2} \bigg)  =   {4}^{1}  - 1

\displaystyle \sf\implies f \bigg( \frac{1}{2} \bigg)  = 4  - 1

\displaystyle \sf\implies f \bigg( \frac{1}{2} \bigg)  =  3

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 2log x base y=6,then the relation between x and y

https://brainly.in/question/27199002

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

#SPJ3

Similar questions