if f(x)=2x^4+ax^3+2x^2-3x+b is exactly divisible by x^2-1 find a and b
Answers
Answered by
6
Heya !!!
Given that,
(X²-1) is a factor of the given polynomial.
P(X) = 2X⁴+AX³+2X²-3X+B
G(X) => X²-1
On dividing P(X) by G(X) we get,
X²-1 )2X⁴+AX³+2X²-3X+B( 2X² + AX + 2
*******2X⁴ ******-2X²
-------------------------------------
******0***+ AX³ + 4X² - 3X + B
***********+AX³ *********-AX + B
---------------------------------------------
************0******+ 4X² + X(A - 3) + B
********************+4X² *************-2
----------------------------------------------------
********************0******+ X(A-3) + (B+2)
Therefore,
Quotient = 2X²+AX+ 2
And,
Remainder = X(A-3) + (B+2)
Now,
Remainder = 0
X(A-3) + (B+2) = 0
X(A-3) + (B+2) = 0X + 0
A-3 = 0
A = 3
And,
(B+2) = 0
B = -2
Hence,
A = 3 and B = -2.
★ ★ ★ HOPE IT WILL HELP YOU ★ ★ ★
Given that,
(X²-1) is a factor of the given polynomial.
P(X) = 2X⁴+AX³+2X²-3X+B
G(X) => X²-1
On dividing P(X) by G(X) we get,
X²-1 )2X⁴+AX³+2X²-3X+B( 2X² + AX + 2
*******2X⁴ ******-2X²
-------------------------------------
******0***+ AX³ + 4X² - 3X + B
***********+AX³ *********-AX + B
---------------------------------------------
************0******+ 4X² + X(A - 3) + B
********************+4X² *************-2
----------------------------------------------------
********************0******+ X(A-3) + (B+2)
Therefore,
Quotient = 2X²+AX+ 2
And,
Remainder = X(A-3) + (B+2)
Now,
Remainder = 0
X(A-3) + (B+2) = 0
X(A-3) + (B+2) = 0X + 0
A-3 = 0
A = 3
And,
(B+2) = 0
B = -2
Hence,
A = 3 and B = -2.
★ ★ ★ HOPE IT WILL HELP YOU ★ ★ ★
Answered by
5
Hi,
Please see the attached file!
Thanks
Please see the attached file!
Thanks
Attachments:
Similar questions