If f (x) = 3+2sinx+5cosx/cosx, then f' (x) =
Answers
Answered by
1
Answer:
f'(x) = 3secx•tanx + 2sec²x
Solution:
• GIVEN : f(x) = (3 + 2sinx + 5cosx)/cosx
• TO FIND : f'(x) = ?
We have ;
=> f(x) = (3 + 2sinx + 5cosx)/cosx
=> f(x) = 3/cosx + 2sinx/cosx + 5cosx/cosx
=> f(x) = 3secx + 2tanx + 5
Now,
Differentiating both sides wrt x , we get ;
=> df(x)/dx = d3secx/dx +d2tan/dx +d5/dx
=> f'(x) = 3•dsecx/dx + 2•dtan/dx + 0
=> f'(x) = 3secx•tanx + 2sec²x
Hence,
f'(x) = 3secx•tanx + 2sec²x
Similar questions