Math, asked by jessica9773, 2 months ago

If f(x) = 3√x in(x), find f'(x).

b)Find f'(4)​

Answers

Answered by 1738Aditya9122
1

Answer:

6

Step-by-step explanation:

f(x)= 3rootx

Now putting x = 4

f(4)= 3root4

f(4)= 3×2

f(4)= 6

Please mark me as brainliest

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:f(x) = 3 \sqrt{x} \: ln(x)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) =\dfrac{d}{dx}( 3 \sqrt{x} \: ln(x))

\rm :\longmapsto\:f'(x) = 3\bigg(\dfrac{d}{dx} \sqrt{x} \: ln(x) \bigg)

\rm :\longmapsto\:f'(x) = 3\bigg(ln(x) \: \dfrac{d}{dx} \sqrt{x} \:  +  \:  \sqrt{x}\dfrac{d}{dx} \: ln(x) \bigg)

\red{\bigg \{ \because \: \dfrac{d}{dx}u.v \:  =  \: v \: \dfrac{d}{dx}u \:  +  \: u \: \dfrac{d}{dx}v\bigg \}}

\rm :\longmapsto\:f'(x) = 3\bigg(ln(x) \: \dfrac{1}{2 \sqrt{x} }  +  \sqrt{x} \times \dfrac{1}{x}   \bigg)

\red{\bigg \{ \sf\because \: \dfrac{d}{dx}ln(x) =  \dfrac{1}{x}   \bigg \}} \\ \red{\bigg \{ \sf \because \:\dfrac{d}{dx} \sqrt{x} =  \dfrac{1}{2 \sqrt{x} }   \bigg \}}

\rm :\longmapsto\:f'(x) = 3\bigg(\: \dfrac{ln(x)}{2 \sqrt{x} }  +  \dfrac{1}{ \sqrt{x} }   \bigg)

\rm :\longmapsto\:f'(4) = 3\bigg(\: \dfrac{ln(4)}{2 \sqrt{4} }  +  \dfrac{1}{ \sqrt{4} }   \bigg)

\rm :\longmapsto\:f'(4) = 3\bigg(\: \dfrac{2 \: ln(2)}{2 \times 2 }  +  \dfrac{1}{2 }   \bigg)

\rm :\longmapsto\:f'(4) = 3\bigg(\: \dfrac{\: ln(2)}{2}  +  \dfrac{1}{2 }   \bigg)

\rm :\longmapsto\:f'(4) = 3\bigg(\: \dfrac{\: ln(2) + 1}{2}\bigg)

Additional Information :-

\rm :\longmapsto\:\dfrac{d}{dx}k = 0

\rm :\longmapsto\:\dfrac{d}{dx}x = 1

\rm :\longmapsto\:\dfrac{d}{dx}sinx = cosx

\rm :\longmapsto\:\dfrac{d}{dx}cosx =  -  \: sinx

\rm :\longmapsto\:\dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx

\rm :\longmapsto\:\dfrac{d}{dx}secx =  \: secx \: tanx

\rm :\longmapsto\:\dfrac{d}{dx}tanx =  \:  {sec}^{2}x

\rm :\longmapsto\:\dfrac{d}{dx}cotx =   - \:  {cosec}^{2}x

Similar questions