if f(x)=3x-2 and f°g(x)=6x-2 then find the value of x such that g°f(x)=8
Answers
Answered by
1
Answer:
Step-by-step explanation:
Given:
f(x) = 3x - 2
fog(x) = 6x - 2
To find: g(x) = ?
Now,
Let g(x) = y then,
∴ fog(x) = 6x - 2
⇒ f(g(x)) = 6x - 2
⇒ f(y) = 6x - 2
⇒ 3y - 2 = 6x - 2
⇒ 3y = 6x - 2 + 2
⇒ 3y = 6x
⇒ y = 6x/3
∴ y = 2x
Hence, The required value of g(x) is 2x.
Similar questions