Math, asked by Jasminechaurasia, 9 months ago

If f(x)=3x+2 and g(x)=√2x+5, then find (fog) (1)​

Answers

Answered by BrainlyConqueror0901
49

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{fog(1)=3\sqrt{2}+17}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given: }}  \\  \tt:  \implies f(x) = 3x + 2\\  \\ \tt:  \implies g(x) =  \sqrt{2}{x}+5 \\  \\  \red{\underline \bold{To \: Find: }}  \\  \tt:  \implies fog(1)=?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies fog(x) = f(g(x))  \\  \\ \tt:  \implies fog(x) = f( \sqrt{2}x  + 5) \\  \\ \tt:  \implies fog(x) = 3(\sqrt{2}x  + 5) + 2 \\  \\ \tt:  \implies fog(x)= 3\sqrt{2}x+15+2 \\  \\  \green{\tt:  \implies fog(x) = 3\sqrt{2}x+17}

 \tt:  \implies fog(1) =  3\sqrt{2} \times 1 + 17 \\  \\   \green{\tt:  \implies fog(1) = 3 \sqrt{2}  + 17} \\  \\   \green{\tt \therefore \tt:  \implies fog(1)  \: is \: 3 \sqrt{2}  + 17}

Answered by asritadevi2emailcom
229

 \green{ \underline \bold{fog(1) = 3 \sqrt{2}  + 17 : }} \\ \orange{ \underline \bold{given: }} \\  \tt :  \implies \: f(x) = 3x + 2 \\ \tt :  \implies \: g(x) =  \sqrt{2x + 5}  \\    \\ \blue{ \underline \bold{to \: find: }} \\ \tt :  \implies \: fog(1) =  ?  \\ \green{ \underline \bold{as \: we \: know : }} \\ \tt :  \implies \: fog(x) = f(g(x)) \\ \tt :  \implies \: fog(x) = f( \sqrt{2} x + 5) \\ \tt :  \implies \: fog(x) = 3( \sqrt{2}  + 5x) + 2 \\ \tt :  \implies \: fog(x) = 3 \sqrt{2}  + 15 + 2 \\  \\  \\ \green{ \underline \bold{se \: now : }}\tt :  \implies \:   fog (x) = 3 \sqrt{2}  \times 1 + 17 \\ \tt :  \implies \: fog(1) =  3\sqrt{2 \times 1 + 17}  \\   \\  \\ \pink{ \underline \bold{ \tt :  \implies: fog(1) = 3 \sqrt{2} + 17 }} \\  \\  \red{ \underline \bold{\tt :  \implies \: fog(1)is \: 3 \sqrt{2 + 17} : }}

Similar questions