If f(x)=3x+2 and g(x)=√2x+5, then find (fog) (1)
Answers
Answered by
1
This is a composition of functions
f(x)=2x+5
g(x)=3+x
[fog](x)=f(g(x))=f(3+x)=2(3+x)+5
=6+2x+5=2x+11
And
[gof](x)=g(f(x))=g(2x+5)=3+2x+5
= 2x + 8
Hopes it help you✌️✌️
Answered by
270
❥
- f(x) = 3x + 2
- g(x) = √2x + 5
❥
- fog(1)
❥
⇒ fog(x) = f(g(x))
⇒ fog(x) = f(√2x + 5)
⇒ fog(x) = 3(√2x + 5)+2
⇒ fog(x) = 3√2x + 15 + 2
⇒ fog(x) = 3√2x + 17
⇒ fog(1) = 3√2 × 1 + 17
⇒ fog(1) = 3√2 + 17
★ Hence, fog(1) is 3√2 + 17
Similar questions