If f(x) = 3x + 2 + logx find f'(x)
Answers
Answered by
0
f (x)=3x+2+log x
f' (x)=3+1/x
f' (x)=3+1/x
Simmi2001:
Hope it helps
Answered by
1
Given,
f ( x) = 3x + 2 + logx .
Now,
f'(x) = d/dx ( 3x + 2 + logx)
Using Sum Rule [ d/dx(u + v) = du/dx + dv/dx ]
f'(x) = d/dx(3x) + d/dx(2) + d/dx(logx)
= 3 dx/dx + 0 + 1/x
= 3 + 1/x
= 3x + 1 / x.
Formulae :
d/dx(x^n) = n x^n-1
d/dx ( Kx) = K d(x)/dx
f ( x) = 3x + 2 + logx .
Now,
f'(x) = d/dx ( 3x + 2 + logx)
Using Sum Rule [ d/dx(u + v) = du/dx + dv/dx ]
f'(x) = d/dx(3x) + d/dx(2) + d/dx(logx)
= 3 dx/dx + 0 + 1/x
= 3 + 1/x
= 3x + 1 / x.
Formulae :
d/dx(x^n) = n x^n-1
d/dx ( Kx) = K d(x)/dx
Similar questions