Math, asked by regkri69, 2 months ago

if f (x)=3x+5 and fog(x+2)=12x+17,find the value of x such that,gof(x)=88​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

 \green{\rm :\longmapsto\:f(x) = 3x + 5}

So,

\green{\bf :\longmapsto\:f(g(x)) = 3g(x) + 5 -  -  - (1)}

Now, Further given that

\red{\rm :\longmapsto\:fog(x + 2) = 12x + 17}

Put x + 2 = y, so that x = y - 2

So,

\red{\rm :\longmapsto\:fog(y) = 12(y - 2)+ 17}

\red{\rm :\longmapsto\:fog(y) = 12y - 24+ 17}

\red{\rm :\longmapsto\:fog(y) = 12y -7}

\red{\rm :\longmapsto\:f(g(y)) = 12y -7}

 \red{\bf :\longmapsto\:f(g(x)) = 12x - 7 -  -  - (2)}

Now, Equating equation (2) and (1), we get

 \blue{\rm :\longmapsto\:3g(x) + 5 = 12x - 7}

 \blue{\rm :\longmapsto\:3g(x)= 12x - 7 - 5}

 \blue{\rm :\longmapsto\:3g(x)= 12x - 12}

 \blue{\bf :\longmapsto\:g(x)= 4x - 4 -  -  - (3)}

So, it means

\bf\implies \:g(f(x) = 4f(x) - 4

Further, given that,

\purple{\rm :\longmapsto\:gof(x) = 88}

\purple{\rm :\longmapsto\:g(f(x)) = 88}

\purple{\rm :\longmapsto\:4f(x)  - 4= 88}

\purple{\rm :\longmapsto\:4f(x)= 88 + 4}

\purple{\rm :\longmapsto\:4f(x)= 92}

\purple{\rm :\longmapsto\:f(x)= 23}

\purple{\rm :\longmapsto\:3x + 5= 23}

\purple{\rm :\longmapsto\:3x= 23 - 5}

\purple{\rm :\longmapsto\:3x= 18}

\purple{\bf :\longmapsto\:x= 6}

Similar questions