If f(x+4)=f(x) +f(4) then prove that f(0)=0, f(-4)=-f(4) and f(8)+2f(-4) =0
Answers
Answered by
9
Answer:
solñ:- here,
if X=0 then,
f(0+4)= f(0)+f(4)
=> f(4)= f(0)+f(4)
=> f(0)=f(4)-f(4)
=> f(0)= 0————(1)
Again,
if X=(-4) then,
f(-4+4)=f(-4)+f(4)
=> f(0)= f(-4)+f(4)
=> 0= f(-4)+f(4) [from 1, f(0)=0]
=>f(-4)= -f(4)——––(2)
Now,
if X=4 then,
f(4+4)= f(4)+f(4)
=>f(8)=2.f(4)
=>f(8)-2.f(4)=0
=>f(8)+[-2.f(4)]=0
=>f(8)+2.[-f(4)]=0
=>f(8)+2.f(-4)=0 [from 2, -f(4)=f(-4)]
Hence proved...
Similar questions