If f(x+4) = f(x) + f(4), XE R, prove that f(0) = 0 and f(-4) = f(4).
Answers
Answered by
3
Answer:
Make me brainliest please hope
Attachments:
Answered by
2
Answer:
solň:- here,
if X=0 then,
f(0+4)= f(0)+f(4)
=> f(4)= f(0)+f(4)
=> f(0)=f(4)-f(4)
=> f(0)= 0——
Again,
if X=(-4) then,
f(-4+4)=f(-4)+f(4)
=> f(0) = f(-4)+f(4)
=> 0= f(-4)+f(4)
=>f(-4)= -f(4)
Now,
if X=4 then,
f(4+4)= f(4)+f(4)
=>f(8)=2.f(4)
=>f(8)-2.f(4)=0
=>f(8)+[-2.f(4)]=O
=>f(8)+2.[-f(4)]=0
=>f(8)+2.f(-4)=0
Hence proved...
Similar questions
Biology,
3 days ago
Psychology,
3 days ago
Science,
6 days ago
English,
8 months ago
Math,
8 months ago