Math, asked by faizandakhave, 9 months ago

if f(x)=4[x]-3 where [x] is greater integer function of x,then find (a) f(7.2) (b) f(0.5) (c) f(-5/2 (d) f(2π) where π=3.14​

Answers

Answered by HappiestWriter012
16

[x] represents the greatest integer function, gives the greatest integer less than or equal to number.

Given,

f(x) = 4[x] - 3

a) f(7.2)

⇒ 4[7.2] - 3

⇒ 4(7) - 3

⇒ 28 - 3

⇒ 25

b) f(0.5)

⇒4[0.5] - 3

⇒ 4(0) - 3

⇒ 0 - 3

⇒-3

c) f(-5/2)

⇒ f(-2.5)

⇒4[-2.5] - 3

⇒ 4(-3) - 3

⇒-12- 3

⇒ - 15

d) f(2π)

Given, π = 3.14

2π = 6.28

So, f(2π) = f(6.28)

⇒ f(2π)

⇒ f(6. 28)

⇒ 4[6.28] - 3

⇒ 4(6) - 3

⇒ 24 - 3

⇒ 21

Similar questions