if f(x)=4[x]-3 where [x] is greater integer function of x,then find (a) f(7.2) (b) f(0.5) (c) f(-5/2 (d) f(2π) where π=3.14
Answers
Answered by
16
[x] represents the greatest integer function, gives the greatest integer less than or equal to number.
Given,
f(x) = 4[x] - 3
a) f(7.2)
⇒ 4[7.2] - 3
⇒ 4(7) - 3
⇒ 28 - 3
⇒ 25
b) f(0.5)
⇒4[0.5] - 3
⇒ 4(0) - 3
⇒ 0 - 3
⇒-3
c) f(-5/2)
⇒ f(-2.5)
⇒4[-2.5] - 3
⇒ 4(-3) - 3
⇒-12- 3
⇒ - 15
d) f(2π)
Given, π = 3.14
2π = 6.28
So, f(2π) = f(6.28)
⇒ f(2π)
⇒ f(6. 28)
⇒ 4[6.28] - 3
⇒ 4(6) - 3
⇒ 24 - 3
⇒ 21
Similar questions