if f(x) = 5^x , Then prove that f(x+1) - f(x) = 4f(x)
Answers
Answered by
0
It is proven that if f(x) = 5ˣ, then f(x+1) - f(x) = 4f(x)
Given:
f(x) = 5ˣ
To find:
Prove that f(x+1) - f(x) = 4f(x)
Solution:
Given that f(x) = 5ˣ
Now find f(x+1) - f(x) and 4f(x) to prove given statement
To find f(x+1) take x = (x+1) and sustitute in given function
=> f(x) = f(x+1)
=> f(x+1) = 5^(x+1) = 5ˣ + 5¹
=> f(x+1) = 5ˣ ( 5)
From the above calculation,
=> f(x+1) - f(x) = 5ˣ (5) - 5ˣ
=> f(x+1) - f(x) = 5ˣ [ 5 - 1]
=> f(x+1) - f(x) = 4(5ˣ) -----(1)
Now find 4f(x)
=> 4f(x) = 4(5ˣ) ----(2)
From (1) and (2)
=> f(x+1) - f(x) = 4(5ˣ) = 4f(x)
Therefore,
It is proven that if f(x) = 5ˣ, then f(x+1) - f(x) = 4f(x)
#SPJ1
Similar questions