Math, asked by murtazavali2007, 1 month ago

If , f(x) = 6x³ - ax² + x - 3 , find 'a' at x = -1/2

Answers

Answered by mano792
9

\huge\mathfrak\blue{answer}

we \: have \:  {6}^{3}  - a {x }^{2}   + x - 3 \\ on \: putting \: x =   { \frac{1}{2} }^{3} in\:f(x  ) \\  \\  \\ we \: get   f( \frac{ - 1}{2}) = 6  { \frac{ - 1}{2} }^{3}  - a { \frac{ - 1}{2} }^{2}  +  \frac{ - 1}{2}  - 3  \\  6 { \frac{ - 1}{2} }^{3}  - a  { \frac{ - 1}{2} }^{2}   +  \frac{ - 1}{2}  - 3\\  \implies 6 { \frac{ - 1}{8} } - 1 (\frac{a}{4}  ) - 1( \frac{1}{2}) - 1( \frac{3}{1} ) = 0 \\  \implies  \frac{ - 3}{4}   -1 (\frac{a}{4}) - 1( \frac{1}{2})   - 1( \frac{3}{1} ) = 0 \\  \implies  \frac{ - 3}{4}  +  \frac{( - a)}{4}  - \frac{1}{2} - 3 = 0 \\  \implies  \frac{ - 17}{4}   +  \frac{( - a)}{4}  = 0 \\  \implies \frac{4 \times \frac{ - 17}{4} }{4}  +  \frac{( - a)}{4}  = 0 \\  \implies - \frac{ - 17 - a}{4}  = 0 \\  \implies \frac{4( - a - 17)}{4}  = 0 \\  \implies  - a - 17 = 0 \\  \implies - a - 17 = 0 \\  = a = -17

\\\text{a=-17}

\text{hope\:it\: helps\:you}

Similar questions