Math, asked by Fiza7444, 9 months ago

If f(x)= 7^x then prove that f(m+n+p) = f(m).f(n).f(p)

Answers

Answered by pulakmath007
28

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \sf{f(x) =  {7}^{x} }

TO PROVE

 \sf{f(m + n + p ) = f(m).f(n).f(p)\:  \: }

PROPERTY TO BE IMPLEMENTED

We are aware of the property of indices that

 \sf{ {a}^{m} \times  {a}^{n}    =  {a}^{m + n} \: }

PROOF

Here

 \sf{f(x) =  {7}^{x} }

So

 \sf{f(m + n + p) =  {7}^{(m + n + p)} }

 \sf{f(m) =  {7}^{m} }

 \sf{f(n) =  {7}^{n} }

 \sf{f(p) =  {7}^{p} }

LHS

 =  \sf{f(m + n + p)  }

 \sf{ =  {7}^{(m + n + p)} }

RHS

 \sf{= f(m).f(n).f(p)\:  \: }

 \sf{=  {7}^{m} \: .  \: {7}^{n} \: . \:  {7}^{p}\: }

 \sf{ =  {7}^{(m + n + p)} } \:  \: (using \: above \: property \: )

Hence LHS = RHS

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If 2^(x+3) + 2^(x-4) =129, then find the value of x

https://brainly.in/question/23183505

Similar questions