Math, asked by satyamy6005, 1 year ago

if f(x) = 9^x upon 9^x+3 then f (x) + f ( 1-x)

Answers

Answered by Anomi
7
1 will be the answer..
Attachments:
Answered by sanjeevk28012
3

Given :

The function f ( x ) = \dfrac{9^{x}}{9^{x+3}}

To Find :

 f ( x )  +   f ( 1 - x )

Solution :

∵  f ( x ) = \dfrac{9^{x}}{9^{x+3}}

Or,   f ( x ) = 9^{ (x) - (  x+3)}           ( ∵ \dfrac{a^{b} }{a^{c} }  =  a^{b+c}    , from base indices formula )

i.e   f ( x ) = 9^{ (-3 )}          ...........1

And,  for x = 1 - x

i.e   f ( 1 - x ) = \dfrac{9^{1 - x}}{9^{1 - x +3}}

Or,   f ( 1 - x ) = \dfrac{9^{1 - x}}{9^{4- x }}

Or,  f ( 1 - x ) =  9^{ (1-x) - (4 - x)}         ( ∵ \dfrac{a^{b} }{a^{c} }  =  a^{b+c}    , from base indices formula )

Or,  f ( 1 - x ) =  9^{ (5-2 x )}           ...........2

Now, From eq 1 and eq 2

  f ( x ) + f ( 1 - x ) =  9^{ (-3 )} + 9^{ (5-2 x )}  

Hence, The value of   f ( x ) + f ( 1 - x ) is  9^{ (-3 )} + 9^{ (5-2 x )}     Answer

Similar questions