Math, asked by tanvimayekar2003, 11 months ago

If f(x)=a sin x-b cosx,f '(π/4)=√2 and f '(π/6)=2 then find f(x)​

Answers

Answered by mysticd
10

 Given , \: f(x) = a sinx - b cosx \: ---(1)

 f'(x) = acos x - b( -sin x ) \\\implies = acos x + bsin x \: ---(2)

 f'(\frac{\pi}{4}) = \sqrt{2} \: ( Given )

 \implies a cos \big( \frac{\pi }{4} \big ) + bsin \big( \frac{\pi }{4} \big ) = \sqrt{2}

 \implies  a \times \frac{1}{\sqrt{2}} + b \times \frac{1}{\sqrt{2}}\} = \sqrt{2}

 \implies \frac{1}{\sqrt{2}}(a+b) = \sqrt{2}

 \implies a + b = 2 \: ---(3)

 f'( \frac{\pi}{6}) = 2 \: (Given )

 \implies a cos \big( \frac{\pi }{6} \big ) + bsin \big( \frac{\pi }{6} \big ) = 2

 \implies  a \times \frac{1}{2} + b \times \frac{\sqrt{3}}{2}= 2

 \implies \frac{1}{2}(a+\sqrt{3}b) = 2

 \implies a + \sqrt{3}b = 4 \: ---(4)

/* Subtract equation (3) from equation (4), we get */

 a( \sqrt{3}-1) = 2

 \implies a = \frac{2}{(\sqrt{3} - 1 )}

 \implies a = \frac{2(\sqrt{3}+1)}{(\sqrt{3} - 1 )(\sqrt{3}+1)}

 \implies a = \frac{2(\sqrt{3}+1)}{(\sqrt{3})^{2} - 1^{2}}

 \implies a = \frac{2(\sqrt{3}+1)}{(3-1)}

 \implies a = \frac{2(\sqrt{3}+1)}{2}

 \implies a = \sqrt{3} + 1 \:---(5)

/* Substitute value of a in equation (3), we get */

 \sqrt{3} + 1 + b = 2

 \implies b = 1 - \sqrt{3} \: ---(6)

Therefore.,

 f(x) = (\sqrt{3} +1) sinx + ( 1 - \sqrt{3}) cos x

•••♪

Similar questions