Math, asked by sreevishnudurga15, 7 hours ago

if f(x)=(a^(x))/(x^(a)) then f'(a)=​

Answers

Answered by deepavelpandian
1

Answer:

Correct option is

B

loga−a

According to question,

f′(x)=x2aaxlogaxa−xa+1ax

⇒f′(a)=a2aaaloga.aa−aa+1aa

Hence,

 ⇒f′(a)=loga−a

Answered by ProximaNova
15

Answer:

f'(a) = loga - 1

Step-by-step explanation:

\sf \bf :\longmapsto f(x) = \dfrac{a^x}{x^a}

Taking log both sides,

\sf \bf :\longmapsto log (f(x)) = log\left(\dfrac{a^x}{x^a}\right)

\sf \bf :\longmapsto log(f(x)) = loga^x - logx^a

\sf \bf :\longmapsto log(f(x)) = xloga - alogx

Differentiating to find f'(x),

Use the property,

\boxed{\boxed{ \bf \tt \dfrac{d}{dx}logx = \dfrac{1}{x}}}

Thus,

\sf \bf :\longmapsto \dfrac{1}{f(x)} f'(x) = loga - \dfrac{a}{x}

\sf \bf :\longmapsto f'(x) = \dfrac{a^x}{x^a} \left(loga - \dfrac{a}{x}\right)

\sf \bf :\longmapsto f'(a) = \dfrac{a^a}{a^a} \left(loga - \dfrac{a}{a}\right)

\sf \bf :\longmapsto f'(a) = loga - 1

Hence,

\boxed{\boxed{\sf \bf f'(a) = loga - 1}}

\color{#FF7968}{\rule{36pt}{7pt}}\color{#FEDD8E}{\rule{36pt}{7pt}}\color{#FBBE2E}{\rule{36pt}{7pt}}\color{#60D399}{\rule{36pt}{7pt}}\color{#6D83F3}{\rule{36pt}{7pt}}

Similar questions