If f(x) = ax^2 - bx - 1, f(2)=5. f(-2) = 10 find a, b.
Answers
Answered by
12
Answer:
a is 17/8
b is -5/4
Step-by-step explanation:
f(x) = ax² - bx - 1
f(2) = 5
a(2)² - b(2) - 1 = 5
4a - 2b = 5 + 1
4a - 2b = 6
2(2a + b) = 6
2a + b = 3
b = 3 - 2a ----(1)
f(-2) = 10
a(-2)² + b(-2) - 1 = 10
4a - 2b = 10 + 1
4a - 2b = 11 ---(2)
put value if b in eq.--(2)
4a - 2(3 - 2a) = 11
4a - 6 + 4a = 11
8a = 11 + 6
8a = 17
a = 17/8
put value of a in eq.--(1)
b = 3 - 2(17/8)
b = 3 - 17/4
b = (12 - 17)/4
b = -5/4
Answered by
0
Answer:
a = 5/4
b = 13/8
Step-by-step explanation:
f(2) = a(2)² – b(2) – 1
= a4 – b2 – 1
f(–2) = a(–2) – b(–2) – 1
= a4 + b2 – 1
f(2) = 5
a4 – b2 – 1 = 5
a4 = 6 + b2
a = 6 + b2/4
f(–2) = 10
a4 + b3 – 1 = 10
(6 + b2/4) (4) + b2 – 1 = 10
6 + b2 + b2 – 1 = 10
6 + b4 = 11 – 6
b = 5/4
f(2) = 5
a4 – b2 – 1 = 5
a4 – (5/4) (2) – 1 = 5
a4 – 5/2 = 4
a4 = 4 + 5/2
a4 = 13/2
a = 13/8
Similar questions