Math, asked by hrishita7493, 4 months ago

if f(x)=ax^2+bx+a is divided by (x-b) where a,b does not equal to 0,then a=?​

Attachments:

Answers

Answered by VishnuPriya2801
4

Question:-

If f(x) = ax² + bx + a is divided by (x - b) a , b ≠ 0 , remainder is a , then a is :

A) b²

B) - 1

C) 0

D) a + b

Answer:-

Given:

If f(X) = ax² + bx + a is divided by (x - b) leaves the remainder a where a , b ≠ 0.

We are given,

f(x) = ax² + bx + a

g(x) = x - b

g(x) = 0

⟹ x - b = 0

⟹ x = b

Substitute x = b in the given polynomial.

⟹ f(b) = a(b)² + (b)(b) + a

⟹ a = ab² + b² + a

⟹ a - a = ab² + b²

⟹ 0 = b² (a + 1)

⟹ 0 × 1/b² = a + 1

⟹ 0 = a + 1

⟹ a = - 1

The required value of a is - 1 (Option - B).

Answered by Theopekaaleader
1

Quêstioñ

if f(x)=ax²+bx+a is divided by (x-b) a,b≠0,

remainder is 'a' then

(a)b²

(b)-1

(c)0

(d)a+b

Given a quadratic equation is ax²+bx+a=0

  \sf \: let \:  two \: roots \: be \:  \alpha  \: and \beta  \\  \sf \longmapsto \:  \alpha  =  -  \beta  \\  \sf \longmapsto \:  \alpha  +  \beta  -  \frac{ - b}{a}  \\  \sf \longmapsto \:  -  \beta  +  \beta  =  \frac{ -  - b}{a} \\  \\  \tt \sf \longmapsto \:  0 \longmapsto \frac{ - b}{a}   \\  \tt \sf \longmapsto \: b = 0 \:  \:  \:  \:  \:  -  -  -  - (1) \\  \tt \sf  \: we \: have \: one \: root \: negative \: so \:  \\  \sf \tt \longmapsto \alpha  \beta <0 \\  \tt \sf \longmapsto \frac{c}{a}<0 \\  \\  \tt \sf  \: so here \: either \: c \: or \: a  \:  will \: be \: negative \:  \\  \tt \sf \: means \:  \: a \: and \: c \: will \: be \: have \: oppositive \: sign \:

f(b)=a(b)²+(b)(b)+a

a=ab²+b²+a

a-a=ab²+b²

0=b²(a+1)

0=a+1

a=-1

Similar questions