if f(x)=ax^2+bx+c, find a, b, c given that f(1)=4, f(2)=13, f(-2)=1.
Answers
Answer:
The values of a, b and c are 2, 3 and -1 respectively.
Given:
- f (x) = ax² + bx + c
- f (1) = 4, f (2) = 13 and f (-2) = 1
To find:
- The values of a, b and c.
Solution:
=> f (x) = ax² + bx + c
Substitute x = 1,
But, f (1) = 4
=> a (1)² + b (1) + c = 4
=> a + b + c = 4...(1)
Substitute x = 2,
But, f (2) = 13
=> a (2)² + b (2) + c = 13
=> 4a + 2b + c = 13...(2)
Substitute x = -2,
But, f (-2) = 1
=> a (-2)² + b (-2) + c = 1
=> 4a - 2b + c = 1...(3)
From equation (1), we get
>> c = 4 - a - b
Substitute c = 4 - a - b in equations (2) and (3), we get
=> 4a + 2b + 4 - a - b = 13
=> 3a + b = 9...(4)
And
=> 4a - 2b + 4 - a - b = 1
=> 3a - 3b = -3
=> a - b = -1...(5)
Add equations (4) and (5), we get
3a + b = 9
+
a - b = -1
_________
4a = 8
>> a = 2
Substitute a = 2 in equation (5), we get
>> 2 - b = -1
>> b = 3
Substitute the values of a and b in c = 4 - a - b, we get
>> c = 4 - 2 - 3
>> c = -1
The values of a, b and c are 2, 3 and -1 respectively.
Answer:
For f(x) = ax2 + bx + c, if f(1) = 8 and f(-1) = 4, find the value of a + c?
Get a global BA (H) in Liberal Arts, Sports, Design etc in India.
given f(x) = ax^2 + bx + c
(i) put x=1 , f(1) = a+b+c
but given that f(1) = 8 hence a+b+c = 8——————-(1)
(ii) put x=-1 , f(-1) = a-b+c
but given that f(-1) = 4 hence a-b+c = 4——————-(2)
consider (1) + (2) :- a+b+c + a-b+c = 8 + 4
2a + 2c = 12
2(a+c) =12
a+c = 6.