Math, asked by sdsk11972, 5 months ago

if f(x)=ax+b/bx+a, prove that f(x).f(1/x)=1​

Answers

Answered by Arceus02
10

Given:-

  •  \sf f(x) =  \dfrac{ax + b}{bx + a}

\\

To show:-

  • \sf f(x).f \bigg( \dfrac{1}{x}  \bigg) = 1

\\

Answer:-

For f(x):

\sf f(x) =  \dfrac{ax + b}{bx + a}

\\

For f(1/x):

Given that,

\sf f(x) =  \dfrac{ax + b}{bx + a}

For f(1/x) we just have to substitute x as 1/x in f(x).

\sf \longrightarrow \: f \bigg( \dfrac{1}{x}  \bigg) =  \dfrac{ \bigg(a \times  \dfrac{1}{x} \bigg)  + b}{ \bigg(b \times  \dfrac{1}{x}   \bigg)+ a}

\sf \longrightarrow \: f \bigg( \dfrac{1}{x}  \bigg) =  \dfrac{    \quad \bigg(\dfrac{a}{x}   + b \bigg) \quad}{   \quad \bigg( \dfrac{b}{x}   + a  \bigg) \quad}

\sf \longrightarrow \: f \bigg( \dfrac{1}{x}  \bigg) =  \dfrac{    \quad \bigg(\dfrac{a + bx}{x}    \bigg) \quad}{   \quad \bigg( \dfrac{b + ax}{x}    \bigg) \quad}

\sf \longrightarrow \: f \bigg( \dfrac{1}{x}  \bigg) =  \dfrac{    \quad \bigg(\dfrac{a + bx}{ \cancel{x}}    \bigg) \quad}{   \quad \bigg( \dfrac{b + ax}{ \cancel{x}}    \bigg) \quad}

\sf \longrightarrow \: f \bigg( \dfrac{1}{x}  \bigg) =   \dfrac{a + bx}{b + ax}

\\

So f(x).f(1/x):

\sf f(x).f \bigg( \dfrac{1}{x}  \bigg) =  \dfrac{ ax + b}{ bx + a}  \times  \dfrac{a + bx}{b + ax}

\sf  \longrightarrow \: f(x).f \bigg( \dfrac{1}{x}  \bigg) =  \dfrac{ \cancel{ ax + b}}{   \cancel{ bx + a}}  \times  \dfrac{ \cancel{a + bx}}{ \cancel{b + ax}}

\longrightarrow \underline{\underline{ \sf{\green{f(x).f\bigg(\dfrac{1}{x}\bigg) = 1}}}}

Similar questions