Math, asked by sasankachirsai476, 7 months ago

if f(x) = cos [e square]x + cos [-e square]x where [x] stands for greatest integer function then​

Answers

Answered by pulakmath007
4

SOLUTION

GIVEN

 \sf{f(x) =  \cos  \big[  \: {\pi}^{2}  \big] x+ \cos  \big[  -  \: {\pi}^{2}  \big]x }

Where [ x ] stands for greatest integer function

TO DETERMINE

 \displaystyle \sf{1.  \:  \: \:  f \bigg(  \frac{\pi}{2} \bigg)}

 \displaystyle \sf{2.  \:  \: \:  f \bigg(  \frac{\pi}{4} \bigg)}

 \displaystyle \sf{3.  \:  \: \:  f (0)}

EVALUATION

Here it is given that

 \sf{f(x) =  \cos  \big[  \: {\pi}^{2}  \big] x+ \cos  \big[  -  \: {\pi}^{2}  \big]x }

 \sf{Now \:  \: \pi = 3.14}

 \sf{  \therefore \:   \: 9 <  {\pi}^{2} < 10 } \:  \: and \:  \:  - 10 <  {\pi}^{2}  <  - 9

 \sf{ \big[  \: {\pi}^{2}  \big] x = 9x \:  \:  \: and \:  \:  \big[  -  {\pi}^{2}  \big]x =  - 10x }

Now

 \sf{f(x) =  \cos  \big[  \: {\pi}^{2}  \big] x+ \cos  \big[  -  \: {\pi}^{2}  \big]x }

 \sf{ \implies \: f(x) =  \cos  9x+ \cos  ( - 10)x }

 \sf{ \implies \: f(x) =  \cos  9x+ \cos  10x }

1.

 \displaystyle \sf{ f \bigg(  \frac{\pi}{2} \bigg)}

 \displaystyle \sf{  =  \cos \bigg(  \frac{9\pi}{2} \bigg) + \cos \bigg(  \frac{10\pi}{2} \bigg) }

 = 0 - 1

 =  - 1

2.

 \displaystyle \sf{ f \bigg(  \frac{\pi}{4} \bigg)}

 \displaystyle \sf{  =  \cos \bigg(  \frac{9\pi}{4} \bigg) + \cos \bigg(  \frac{10\pi}{4} \bigg) }

 \displaystyle \sf{  =  \frac{1}{ \sqrt{2} } }

3.

 \displaystyle \sf{ f (0)}

 \displaystyle \sf{  =  \cos 0+ \cos 0 }

 = 1 + 1

 = 2

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if cosx+cosy+cosz=0=sinx+siny+sinz then the possible value of cos(x-y/2)=k then |2k|=?

https://brainly.in/question/19988900

2. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions