Math, asked by sanjayagrawal4583, 2 days ago

If f(x) = cos(log x) and f(y) = cos(logy) then find the value of f(x).f(y)-1/2[f(x/y)+f(xy)]​

Answers

Answered by varadad25
30

Answer:

\displaystyle{\boxed{\red{\sf\:f\:(\:x\:)\:.\:f\:(\:y\:)\:-\:\dfrac{1}{2}\:\left[\:f\:\left(\:\dfrac{x}{y}\:\right)\:+\:f\:(\:xy\:)\:\right]\:=\:0\:}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:f\:(\:x\:)\:=\:\cos\:(\:\log\:x\:)}

\displaystyle{\sf\:f\:(\:y\:)\:=\:\cos\:(\:\log\:y\:)}

We have to find the value of

\displaystyle{\sf\:f\:(\:x\:)\:.\:f\:(\:y\:)\:-\:\dfrac{1}{2}\:\left[\:f\:\left(\:\dfrac{x}{y}\:\right)\:+\:f\:(\:xy\:)\:\right]}

\displaystyle{\implies\sf\:\cos\:(\:\log\:x\:)\:\cos\:(\:\log\:y\:)\:-\:\dfrac{1}{2}\:\left[\:\cos\:\left(\:\log\:\left(\:\dfrac{x}{y}\:\right)\:\right)\:+\:\cos\:(\:\log\:(\:xy\:))\:\right]}

\displaystyle{\implies\sf\:\cos\:(\:\log\:x\:)\:\cos\:(\:\log\:y\:)\:-\:\dfrac{1}{2}\:\left[\:\cos\:(\:\log\:x\:-\:\log\:y\:)\:+\:\cos\:(\:\log\:x\:+\:\log\:y\:)\:\right]}

We know that,

\displaystyle{\pink{\sf\:\cos\:(\:a\:-\:b\:)\:+\:\cos\:(\:a\:+\:b\:)\:=\:2\:\cos\:a\:\cos\:b}}

\displaystyle{\implies\sf\:\cos\:(\:\log\:x\:)\:\cos\:(\:\log\:y\:)\:-\:\dfrac{1}{\cancel{2}}\:\times\:\cancel{2}\:\cos\:(\:\log\:x\:)\:\cos\:(\:\log\:y\:)}

\displaystyle{\implies\sf\:\cos\:(\:\log\:x\:)\:\cos\:(\:\log\:y\:)\:-\:\cos\:(\:\log\:x\:)\:\cos\:(\:\log\:y\:)}

\displaystyle{\implies\sf\:0}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:f\:(\:x\:)\:.\:f\:(\:y\:)\:-\:\dfrac{1}{2}\:\left[\:f\:\left(\:\dfrac{x}{y}\:\right)\:+\:f\:(\:xy\:)\:\right]\:=\:0\:}}}}

Answered by takename25
12

Step-by-step explanation:

topic :

  • If f(x) = cos(log x) and f(y) = cos(logy) then find the value of f(x).f(y)-1/2[f(x/y)+f(xy)]

to find :

  • value of f(x).f(y)-1/2[f(x/y)+f(xy)]

solution :

  • Substituting the values we get

  • 1/2 [ cos ( log (x/y)) + cos (log (xy)) ]

  • = cos (log (x)). cos (log (y)) - 1/2 [cos (log (x) - log (y)) + cos (log (x) + log (y))]

  • = cos (log (x)). cos (log (y)) -

  • 1/2 [2 cos (log (x)).c . cos (log (y))] = 0
Similar questions