Math, asked by Hibbert7401, 1 year ago

if F(x)=[cosx−sinx0sinxcosx0001], show that F(x)F(y)=F(x+y).

Answers

Answered by amitnrw
3

Given :  F(x) = \left[\begin{array}{ccc}Cosx&-Sinx&0\\Sinx&Cosx&0\\0&0&1\end{array}\right]

To find :  Show that F(x)F(y) = F(x + y)

Solution:

F(x )  =  \left[\begin{array}{ccc}Cosx&-Sinx&0\\Sinx&Cosx&0\\0&0&1\end{array}\right]

F(y)  =  \left[\begin{array}{ccc}Cosy&-Siny&0\\Siny&Cosy&0\\0&0&1\end{array}\right]

F(x) * F(y)  = \left[\begin{array}{ccc}CosxCosy - SinxSiny&-CosxSiny - SinxCosy&0\\SinxCosy + CosxSiny&-SinxSiny + CosxCosy&0\\0&0&1\end{array}\right]

Cos(x + y) = CosxCosy - Sinxy

Sin(x + y) = SinxCosy + CosxSiny

F(x) * F(y) = \left[\begin{array}{ccc}Cosx(x + y)&-Sin(x + y)&0\\Sin(x + y)&Cos(x + y) &0\\0&0&1\end{array}\right]

=> F(x) * F(y) = F(x + y)

QED

Shown

Learn more:

(d)If A is a matrix of order 3x4 and B is a matrix of order 4x5,what is ...

https://brainly.in/question/9785304

If a and b are matrix with 32 and 56 elements respectively, then the ...

https://brainly.in/question/7583245

Similar questions