Math, asked by 785704268953, 9 months ago

If f(x) defined by f(x) = {log(1+ax)-log(1-bx)}/x when x not=0 f(x) k if x=0 Find the value of k

Answers

Answered by Anonymous
9

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given a function f(x) continuous at x = 0

To Find:

  • We have to find the value of k

Solution:

We have been given a Function f(x) defined

f(x) = \begin{cases} \dfrac{log(1+ax) - log(1-bx) }{x} &amp; \text{ if } \: x \neq 0 \\ \\</p><p>\: \: \: k &amp; \text{ if } \: x = 0 \end{cases}

is continuous at x = 0

_______________________________

Since f(x) is continuos at x = 0

f(0) = \lim_{x \to 0}{f(x)}

\implies k = \lim_{x \to 0} {f(x)}

Putting value of f(x) when x \neq 0

\implies k = \lim_{x \to 0} \left ( \dfrac{log(1+ax)-log(1-bx)}{x} \right )

Breaking denominator x in separate fraction

\implies k = \lim_{x \to 0} \left ( \dfrac{log(1+ax)}{x} - \dfrac{log(1-bx)}{x} \right )

On separating limits

\implies k = \underbrace{ \lim_{x \to 0} \left ( \dfrac{log(1+ax)}{x} \right ) }_{A}- \underbrace{\lim_{x \to 0} \left ( \dfrac{log(1-bx)}{x} \right ) }_{B}

\implies k = A - B __________ ( 1 )

________________________________

Finding the value of part A

A = \lim_{x \to 0} \left ( \dfrac{log(1+ax)}{x} \right )

Multiplying and Dividing by 'a' on RHS

A =a \lim_{x \to 0} \left ( \dfrac{log(1+ax)}{ax} \right )

A = a ____________( 2 )

________________________________

Finding the value of part B

B = \lim_{x \to 0} \left ( \dfrac{log(1-bx)}{x} \right )

Multiplying and Dividing by ( -b ) on RHS

B =(-b) \lim_{x \to 0} \left ( \dfrac{log(1+(-bx))}{(-bx)} \right )

B = (-b) ___________ ( 3 )

________________________________

Putting values of A and B from equation ( 2 ) and ( 3 ) in equation ( 1 )

\implies k = A + B

\implies k = a - ( -b )

\implies k = a + b

Hence value of k is ( a + b )

________________________________

\huge\mathfrak\red{Identity \: \: Used :}

\fbox{\lim_{x \to a}[f(x) +g(x)] = \lim_{x \to a}f(x) + \lim_{x \to a} g(x) }  \\

\fbox{\lim_{x \to 0} \left ( \dfrac{log(1+x)}{x} \right ) = 1}

Answered by Anonymous
5

Step-by-step explanation:

hope it will help you.............

Attachments:
Similar questions