Math, asked by abcd520, 1 year ago

if f(x)=e^5x+13 then f^-1(x)=​

Answers

Answered by Sharad001
8

Question :-

 \sf if \: f(x) =  {e}^{(5x + 13)}  \: then \: find \:  { f}^{ - 1}( x) \\

Answer :-

\mapsto  \:  \boxed{\sf \:   {f}^{ - 1} (x) =  \frac{ \log(x) - 13}{5} } \:

Used Concept :-

If we have any exponential function then firstly let the function equals to "y" ,and then taking lon on both sides after then find value of "x" in terms of "y" and then interchange the "x" into "y" and "y"into "x".

Solution :-

We have ,

 \mapsto \sf \:  \: f(x) =  {e}^{(5x + 13)}  \\  \\  \bf  \:  let \:  \\  \sf \to \: y =  {e}^{(5x + 13)}  \\  \\ \sf taking \log \: on \: both \: \: sides \\  \\  \to  \sf \: \log(y) =   \log( {e}^{(5x + 13)} )  \\  \\  \boxed{ \because \sf  \log {(m)}^{n}  = n \log m} \:  \\  \therefore \\  \\  \to \sf \log(y) = (5x + 13) \log e \\   \boxed{\because \sf \:  \:  \log(e) = 1} \\  \therefore \\   \to  \sf \:  \: \log(y) = 5x + 13 \\  \\  \to \sf \:  \:  5x =  \log(y) - 13 \\  \\  \to \sf \:  \:  x =  \frac{ \log(y) - 13}{5}  \\  \\  \sf \: now \: according \: to \: the \: given \: concept \: \\ \sf  interchange \: x \: and \: y \\  \\  \to \sf \: y =  \frac{ \log(x) - 13}{5}  \\  \\  \bf \: hence \:  \\  \\  \mapsto  \:  \boxed{\sf \:   {f}^{ - 1} (x) =  \frac{ \log(x) - 13}{5} }

Similar questions