Physics, asked by unique1646, 9 months ago

If f(x) = e^x sin x, then df(x) /dx
is:-
1. e^x sin x
2.e^x cos x
3.e^x(sin x + cos x)
4. e^x(sin x - cosx) ​

Answers

Answered by khushiraj29
6

Answer:

2. e^x cos x

The answer is option 2.

df(x)/dx = d e^x sinx / dx

= e^x cosx

(differentiation of e^x is e^x and differentiation of sinx is cos x)

hope it helps :)

Answered by Anonymous
23

Answer:

 \boxed{\mathfrak{4. \ e^x(sin \ x + cos \ x)}}

Given:

 \rm f(x) =  {e}^{x}  \: sin \: x

Explanation:

 \rm \implies  \dfrac{d}{dx}f(x)  \\  \\ \rm \implies   \dfrac{d}{dx} ( {e}^{x} \: sin \: x) \\  \\  \rm  By \:  using  \: the  \: product  \: rule,  \\  \rm  \frac{d}{dx} (uv)= v  \frac{du}{dx}  + u  \frac{dv}{dx}  :  \\  \\ \rm \implies  {e}^{x} ( \frac{d}{dx} sin \: x) + sin \: x (\frac{d}{dx}  {e}^{x} ) \\  \\ \rm \implies  {e}^{x}  \: cos \: x + sin \: x (\frac{d}{dx}  {e}^{x} ) \\  \\ \rm \implies  {e}^{x}  \: cos \: x +  {e}^{x} \:  sin \: x  \\  \\  \rm \implies   {e}^{x} ( sin \: x  + cos \: x)

Similar questions