Math, asked by pardhivkrishna2412, 6 months ago

If f(x) = ex and g(x) = loge x, then (gof)’ (x) is​

Answers

Answered by Anonymous
4

\large\rm { f(x) = e^{x}}

\large\rm{ g(x) = e^{ln \ x}}

\large\rm { f \circ g = x}

\large\rm { \therefore g \circ f = x}

Answered by diwanamrmznu
2

Step-by-step explanation:

 \implies \: f(x) =  {e}^{x}  \\  \\  \implies \: g(x) =   \log_{e}(x)  \\  \\  \implies \red{gof = g(fx)} \\  \\  \implies \: gof = g( {e}^{x} ) \\  \\  \implies \: g( {e}^{x} ) =   \log_{e}( {e}^{x} )  \\  \\  \implies  \boxed{\pink{ \log \:  {m}^{n} = n \log \: m }} \:  \\  \\  \implies \boxed{ \pink{  log_{e}(e)  = 1}} \\  \\  \implies \: g( {e}^{x} ) = x   \log_{e}(e)  \\  \\  \implies \: gof = x

__________________________

thanks

Similar questions