Math, asked by guptaananya2005, 1 month ago

If f(x) is a function satisfying f(1/x) + x^2f(x) = 0, for all non zero x, I find the value of

\int_{sint}^{cosect} \: f(x) \: dx

Quality answer needed.

Don't spam please. ​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:f\bigg(\dfrac{1}{x} \bigg)  +  {x}^{2}f(x) \:  =  \: 0 \:

can be rewritten as

\rm :\longmapsto\:  {x}^{2}f(x) \:  =  \:  -  \: f\bigg(\dfrac{1}{x} \bigg) \:

 \purple{\rm :\longmapsto\:f(x) =  -  \: \dfrac{1}{ {x}^{2} }f\bigg(\dfrac{1}{x} \bigg) -  -  - (1)}

Now, Given integral is

\rm :\longmapsto\:\displaystyle\int_{sint}^{cosect} \: f(x) \: dx

Let assume that

\rm :\longmapsto\:I \:  =  \: \displaystyle\int_{sint}^{cosect} \: f(x) \: dx

On substituting the value of f(x), from equation (1), we get

\rm :\longmapsto\:I =  \:\displaystyle\int_{sint}^{cosect} \:  -  \: \dfrac{1}{ {x}^{2}} \: f\bigg(\dfrac{1}{x} \bigg)  \: dx

To evaluate this integral, we use method of Substitution.

So, we substitute

\red{\rm :\longmapsto\:\dfrac{1}{x} = y \: }

\red{\rm :\longmapsto\: -  \: \dfrac{1}{ {x}^{2} } \: dx = dy \: }

When we substitute, we have to change the limits too.

So,

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y = \dfrac{1}{x}  \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sint & \sf cosect \\ \\ \sf cosect & \sf sint \end{array}} \\ \end{gathered}

So, above integral can be reduced to

\rm :\longmapsto\:I =  \:\displaystyle\int_{cosect}^{sint} \:  -  \: f(y)\: dy

\rm :\longmapsto\:I =  \:  -  \:\displaystyle\int_{cosect}^{sint} \:   \: f(y)\: dy

We know, Limit interchanging property

\boxed{ \tt{ \: \displaystyle\int_{a}^{b}f(x)dx \:  =  \:  -  \: \displaystyle\int_{b}^{a}f(x) \: dx \: }}

So, using this, we get

\rm :\longmapsto\:I \:  =   \:  - \: \displaystyle\int_{sint}^{cosect} \: f(y) \: dy

We know, Variable changing property

\boxed{ \tt{ \: \displaystyle\int_{a}^{b}f(x) \: dx \:  =  \: \displaystyle\int_{a}^{b}f(y) \: dy \: }}

\rm :\longmapsto\:I \:  =   \:  - \: \displaystyle\int_{sint}^{cosect} \: f(x) \: dx

\rm :\longmapsto\:I \:  =   \:  - \: I

\rm :\longmapsto\:2I \:  =   \: 0

\bf\implies \:I = 0

Hence,

 \red{\rm \implies\:\boxed{ \tt{ \: \:\displaystyle\int_{sint}^{cosect} \: f(x) \: dx = 0 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore more :-

\boxed{ \tt{ \: \displaystyle\int_{0}^{a}f(x) \: dx \:  =  \: \displaystyle\int_{0}^{a} \: f(a - x) \: dx \: }}

\boxed{ \tt{ \: \displaystyle\int_{a}^{b}f(x) \: dx \:  =  \: \displaystyle\int_{a}^{b} \: f(a +  b- x) \: dx \: }}

\boxed{ \tt{ \: \displaystyle\int_{ - a}^{a}f(x) \: dx \:  =  \: 2\displaystyle\int_{0}^{a} \: f(x) \: dx \: if \: f( - x) = f(x)}}

\boxed{ \tt{ \: \displaystyle\int_{ - a}^{a}f(x) \: dx \:  =  0 \: if \: f( - x) =  -  \: f(x)}}

Similar questions