Math, asked by bantidekaguwahati, 2 months ago

if f(x) is a polynomial of degree three f(0) = -1 and f(1) = 0. Also,0 is a stationary point of f(x) does not have an extremum at x=0, then the value of integral (given above).​

Attachments:

Answers

Answered by shadowsabers03
3

Here f(x) is a third degree polynomial. Let,

\displaystyle\small\text{$\longrightarrow f(x)=ax^3+bx^2+cx+d$}

Its first derivative is,

\displaystyle\small\text{$\longrightarrow f'(x)=3ax^2+2bx+c$}

and second derivative is,

\displaystyle\small\text{$\longrightarrow f''(x)=6ax+2b$}

Given that,

\displaystyle\small\text{$\longrightarrow f(0)=-1$}

\displaystyle\small\text{$\longrightarrow a(0)^3+b(0)^2+c(0)+d=-1$}

\displaystyle\small\text{$\longrightarrow\underline{d=-1}$}

And,

\displaystyle\small\text{$\longrightarrow f(1)=0$}

\displaystyle\small\text{$\longrightarrow a(1)^3+b(1)^2+c(1)-1=0$}

\displaystyle\small\text{$\longrightarrow a+b+c=1\quad\quad\dots(1)$}

Given that f(x) has a stationary point, but does not have any extremum at x = 0, i.e., f(x) has a point of inflection at x = 0.

That means both \displaystyle\small\text{$f'(0)=0$} being a stationary point and \displaystyle\small\text{$f''(0)=0$} being a point of inflection.

So,

\displaystyle\small\text{$\longrightarrow f'(0)=0$}

\displaystyle\small\text{$\longrightarrow 3a(0)^2+2b(0)+c=0$}

\displaystyle\small\text{$\longrightarrow\underline{c=0}$}

and,

\displaystyle\small\text{$\longrightarrow f''(0)=0$}

\displaystyle\small\text{$\longrightarrow 6a(0)+2b=0$}

\displaystyle\small\text{$\longrightarrow\underline{b=0}$}

Then from (1),

\displaystyle\small\text{$\longrightarrow\underline{a=1}$}

Therefore,

\displaystyle\small\text{$\longrightarrow f(x)=x^3-1$}

Hence,

\displaystyle\small\text{$\longrightarrow\int\dfrac{f(x)}{x^3-1}\ dx=\int\dfrac{x^3-1}{x^3-1}\ dx$}

\displaystyle\small\text{$\longrightarrow\int\dfrac{f(x)}{x^3-1}\ dx=\int dx$}

\displaystyle\small\text{$\longrightarrow\underline{\underline{\int\dfrac{f(x)}{x^3-1}\ dx=x+C}}$}

Similar questions