Math, asked by yaseen7732, 2 months ago

If f(x) is a polynomial of degree three with leading coefficient 1 such that f(1)=2, f(2)=5, f(3)=10 then
the value off (4) is:​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Since it is given that f(x) is a polynomial of degree 3 with leading coefficient 1.

So, it means the required polynomial is

\rm :\longmapsto\:f(x) =  {x}^{3} +  {ax}^{2} + bx + c -  -  - (1)

Now, it is given that

 \red{\bf :\longmapsto\:f(1) = 2}

\rm :\longmapsto\:{1}^{3} +  {a(1)}^{2} + b(1)+ c  = 2

\rm :\longmapsto\:a + b + c = 1 -  -  - (2)

Again, Given that

 \purple{\bf :\longmapsto\:f(2) = 5}

\rm :\longmapsto\:{2}^{3} +  {a(2)}^{2} + b(2)+ c  = 5

\rm :\longmapsto\:8 + 4a + 2b + c = 5

\rm :\longmapsto\:4a + 2b + c =  - 3 -  -  - (3)

 \pink{\bf :\longmapsto\:f(3) = 10}

\rm :\longmapsto\:{3}^{3} +  {a(3)}^{2} + b(3)+ c  = 10

\rm :\longmapsto\:27 + 9a + 3b + c = 10

\rm :\longmapsto\: 9a + 3b + c =  - 17 -  -  - (4)

On Subtracting equation (2) from equation (3), we get

\rm :\longmapsto\: 3a + b=  - 4 -  -  - (5)

On Subtracting equation (3) from equation (4), we get

\rm :\longmapsto\: 5a + b=  - 14-  -  - (6)

On Subtracting equation (5) from (6), we get

\rm :\longmapsto\: 2a=  - 10

\bf\implies \:a \:  =  \:  -  \: 5

On substituting value of 'a' in equation (5), we get

\rm :\longmapsto\: - 15 + b =  - 4

\rm :\longmapsto\: b \:  =  15 - 4

\bf\implies \:\: b \:  =  \: 11

On substituting the value of a and b in equation (1), we get

\rm :\longmapsto\: - 5 + 11  + c = 1

\rm :\longmapsto\:  6  + c = 1

\rm :\longmapsto\:c = 1 - 6

\bf\implies \:c \:  =  \:  -  \: 5

Hence,

\bf :\longmapsto\:f(x) =  {x}^{3}  - 5 {x}^{2} + 11 x  - 5

Therefore,

\bf :\longmapsto\:f(4) =  {4}^{3}  - 5 ({4)}^{2} + 11 (4)  - 5

\bf :\longmapsto\:f(4) =  64  - 80 + 44  - 5

\bf :\longmapsto\:f(4) =  23

Similar questions