Math, asked by Adityarawat313, 7 months ago

If f (x) is differentiable function and f'(x) = log 1/3 (log3 (sin x + a)), then find the
interval for a so that f (x) is decreasing for all real values of x.​

Answers

Answered by shadowsabers03
33

For a function f(x) being a decreasing function in a particular interval, f'(x)<0 at that interval.

Here,

\longrightarrow f'(x)=\log_{\frac{1}{3}}\left(\log_3\left(\sin x+a\right)\right)

If f(x) is decreasing \forall x\in\mathbb{R},

\longrightarrow f'(x)<0

\longrightarrow\log_{\frac{1}{3}}\left(\log_3\left(\sin x+a\right)\right)<0

\longrightarrow\dfrac{\log\left(\log_3\left(\sin x+a\right)\right)}{\log\left(\frac{1}{3}\right)}<0

Since \log\left(\dfrac{1}{3}\right)<0,

\longrightarrow\log\left(\log_3\left(\sin x+a\right)\right)>0

\longrightarrow\log_3\left(\sin x+a\right)>1

\longrightarrow\dfrac{\log\left(\sin x+a\right)}{\log3}>1

Since \log3>0,

\longrightarrow\log\left(\sin x+a\right)>\log3

\longrightarrow\sin x+a>3

\longrightarrow a>3-\sin x

We know that,

\longrightarrow \sin x\in[-1,\ 1]

\longrightarrow -\sin x\in[-1,\ 1]

\longrightarrow 3-\sin x\in[2,\ 4]

So the maximum value of 3-\sin x is 4.

Value of a should be greater than this 4.

Therefore,

\longrightarrow\underline{\underline{a\in(4,\ \infty)}}

Similar questions