If f(x) is monic polynomial of degree 3 such that f(0) = 0, f(1) = 1, f(2) = 2 then
Answers
Answered by
2
Answer:
|f(-1)| = 7
Step-by-step explanation:
f(x) is a monic polynomial of degree 3
⇒ f(x) = x³ + ax² + bx + c, for some a, b, c
f(0) = 0
⇒ 0 + 0 + 0 + c = 0
⇒ c = 0
⇒ f(x) = x³ + ax² + bx, for some a, b
f(1) = 1
⇒ 1 + a + b = 1
⇒ b = -a
⇒ f(x) = x³ + ax² - ax, for some a
f(2) = 2
⇒ 8 + 4a - 2a = 2
⇒ 2a = -6
⇒ a = -3
⇒ f(x) = x³ - 3x² + 3x
So...
f(-1) = (-1)³ - 3(-1)² + 3(-1) = -1 - 3 - 3 = -7
⇒ |f(-1)| = |-7| = 7
Similar questions