Math, asked by luckysonthalia21, 10 months ago


If f(x) is monic polynomial of degree 3 such that f(0) = 0, f(1) = 1, f(2) = 2 then
 |f( - 1)|

Answers

Answered by Anonymous
2

Answer:

        |f(-1)| = 7

Step-by-step explanation:

f(x) is a monic polynomial of degree 3

  ⇒  f(x) = x³ + ax² + bx + c,  for some a, b, c

f(0) = 0

  ⇒  0 + 0 + 0 + c = 0

  ⇒  c = 0

  ⇒  f(x) = x³ + ax² + bx,  for some a, b

f(1) = 1

  ⇒  1 + a + b = 1

  ⇒  b = -a

  ⇒  f(x) = x³ + ax² - ax,  for some a

f(2) = 2

  ⇒  8 + 4a - 2a = 2

  ⇒  2a = -6

  ⇒  a = -3

  ⇒  f(x) = x³ - 3x² + 3x

So...

  f(-1) = (-1)³ - 3(-1)² + 3(-1)  =  -1 - 3 - 3  =  -7

⇒ |f(-1)|  =  |-7| = 7

Similar questions