Math, asked by yusuf2300, 1 year ago

If f(x)= l x l and g(x) = [ x ] . Evaluate :
fog ( -5/3 ) - gof ( -5/3 ) .

Answers

Answered by BEJOICE
13
See the attachment for detail solution
Hope it will help you
Attachments:
Answered by guptasingh4564
5

∴ The value of fog(\frac{-5}{3})-gof(\frac{-5}{3} ) is 0

Step-by-step explanation:

Given;

f(x)=\left |x  \right | and g(x)=\left [ x \right ] then Evaluate fog(\frac{-5}{3})-gof(\frac{-5}{3} )=?

So,

fog(\frac{-5}{3})=f(g(\frac{-5}{3} ))

g(\frac{-5}{3} )=\left [ \frac{-5}{3}  \right ]= \frac{-5}{3}  (∵g(x)=\left [ x \right ]=x )

Then,

fog(\frac{-5}{3})=f(\frac{-5}{3} )=\left | \frac{-5}{3}  \right |=\frac{5}{3} ( ∵\left |  -x\right |=x )

Also,

gof(\frac{-5}{3} )=g(f(\frac{-5}{3} ))

f(\frac{-5}{3} )=\left | \frac{-5}{3}  \right |=\frac{5}{3}  

Then,

gof(\frac{-5}{3} )=g(\frac{5}{3} )=\left [ \frac{5}{3} \right ]=\frac{5}{3}

fog(\frac{-5}{3})-gof(\frac{-5}{3} )

=\frac{5}{3}- \frac{5}{3}

=0

So, the value of fog(\frac{-5}{3})-gof(\frac{-5}{3} ) is 0

Similar questions