Math, asked by kowsik2000p2qzlh, 1 month ago

if f(x) = log(a-x/a+x), then find the value of f(x) + f(-x)​

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:f(x) = log\bigg(\dfrac{a - x}{a + x}  \bigg)

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:f(x) + f( - x)

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:f(x) = log\bigg(\dfrac{a - x}{a + x}  \bigg)

So,

\rm :\longmapsto\:f( - x) = log\bigg(\dfrac{a - ( - x)}{a + ( - x)}  \bigg)

\rm :\longmapsto\:f( - x) = log\bigg(\dfrac{a + x}{a- x}  \bigg)

We know that

 \boxed{ \bf{ \:  \frac{1}{x} =  {x}^{ - 1} }}

So, using this identity,

\rm :\longmapsto\:f( - x) = {\bigg(\dfrac{a  -  x}{a +  x} \bigg) }^{ - 1}

We know that,

 \boxed{ \bf{ \: log {x}^{y} = y \: logx}}

So, using this property, we have

\rm :\longmapsto\:f( - x) =  - \:  log\bigg(\dfrac{a  -  x}{a +  x}\bigg)

\rm :\longmapsto\:f( - x) =  - \:  f(x)

\red{\bigg \{ \because \: f(x) = log\bigg(\dfrac{a  -  x}{a +  x}\bigg) \bigg \}}

\bf\implies \:f(x) + f( - x) = 0

Additional Information :-

 \boxed{ \bf{ \: log(xy) = logx + logy}}

 \boxed{ \bf{ \: log(x \div y) = logx  -  logy}}

 \boxed{ \bf{ \:  log_{x}(x)  = 1}}

 \boxed{ \bf{ \:  log_{ {x}^{y} }( {x}^{z} )  =  \frac{z}{y} }}

 \boxed{ \bf{ \:  log_{x}(y) =  \frac{logx}{logy}}}

 \boxed{ \bf{ \:  {e}^{logx} = 1}}

 \boxed{ \bf{ \:  {e}^{x log_{e}(y) } =  {y}^{x} }}

 \boxed{ \bf{ \:  {a}^{x log_{a}(y) } =  {y}^{x} }}

Similar questions