Math, asked by jotsanad, 2 months ago

IF F(X)=LOG(X-1)/X SHOW THAT F(Y^2)=F(Y)+F(-Y)

Answers

Answered by allysia
1

Step-by-step explanation:

\\\tt f(x) =  log( \dfrac{x - 1}{x} )

For

f(y^2)

\\\tt f( {y}^{2} ) =  log( \dfrac{ {y}^{2}  - 1}{ {y}^{2} } )

Let this be (i)

And f(y)

\\\tt f(y) =log( \dfrac{y - 1}{y} )

and f(-y)

\\\tt f( - y) =    log( \dfrac{ - y- 1}{ - y} ) \\\tt  =  log( \dfrac{y +   1}{y} )

\\\tt f(y)   + f( - y) =    log( \dfrac{y - 1}{y} )   +   log( \dfrac{y  + 1}{y} )

Using sum rule,

\\\tt log(x)  +  log(y)  =  log(xy)

Sum will be:

\\\tt f(y)  + f( - y)=  log( \dfrac{(y- 1)(y + 1)}{ {y}^{2} } ) \\\tt =  log( \dfrac{ {y}^{2}  -  1 }{ {y}^{2} } )

Let this be (ii)

Since eq (i) == eq(ii)

Hence proved.

Similar questions